Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
BMC Genomics ; 25(1): 333, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570739

ABSTRACT

BACKGROUND: The closed poultry houses integrated with a longitudinal water curtain cooling system (LWCCS) are widely used in modern poultry production. This study showed the variations in environmental conditions in closed houses integrated with a longitudinal water curtain cooling system. We evaluated the influence of different environmental conditions on duck growth performance and the transcriptome changes of immune organs, including the bursa of Fabricius and the spleen. RESULT: This study investigated the slaughter indicators and immune organ transcriptomes of 52-day-old Cherry Valley ducks by analyzing the LWCC at different locations (water curtain end, middle position, and fan cooling end). The results showed that the cooling effect of the LWCCS was more evident from 10:00 a.m. -14:00. And from the water curtain end to the fan cooling end, the hourly average temperature differently decreased by 0.310℃, 0.450℃, 0.480℃, 0.520℃, and 0.410℃, respectively (P < 0.05). The daily and hourly average relative humidity decreased from the water curtain end to the fan cooling end, dropping by 7.500% and 8.200%, respectively (P < 0.01). We also observed differences in production performance, such as dressing weight, half-eviscerated weight, skin fat rate, and percentage of abdominal fat (P < 0.01), which may have been caused by environmental conditions. RNA-sequencing (RNA-seq) revealed 211 and 279 differentially expressed genes (DEGs) in the ducks' bursa of Fabricius and spleen compared between the water curtain end and fan cooling end, respectively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the two organs showed the DEGs were mainly enriched in cytokine-cytokine receptor interaction, integral component of membrane, Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) signaling pathway, etc. Our results implied that full-closed poultry houses integrated with LWCCS could potentially alter micro-environments (water curtain vs. fan cooling), resulting in ducks experiencing various stressful situations that eventually affect their immunity and production performance. CONCLUSION: In this study, our results indicated that uneven distributions of longitudinal environmental factors caused by LWCCS would affect the dressed weight, breast muscle weight, skin fat rate, and other product performance. Moreover, the expression of immune-related genes in the spleen and bursa of ducks could be affected by the LWCCS. This provides a new reference to optimize the use of LWCCS in conjunction with close duck houses in practical production.


Subject(s)
Ducks , Transcriptome , Animals , Ducks/genetics , Ducks/metabolism , Signal Transduction , Cytokines/genetics , Gene Expression Profiling
2.
Poult Sci ; 103(5): 103543, 2024 May.
Article in English | MEDLINE | ID: mdl-38447307

ABSTRACT

Endogenous retroviruses (ERV) are viral genomes integrated into the host genome and can be stably inherited. Although ERV sequences have been reported in some avian species' genome, the duck endogenous retroviruses (DERV) genome has yet to be quantified. This study aimed to identify ERV sequences and characterize genes near ERVs in the duck genome by utilizing LTRhavest and LTRdigest tools to forecast the duck genome and analyze the distribution of ERV copies. The results revealed 1,607, 2,031, and 1,908 full-length ERV copies in the Pekin duck (ZJU1.0), Mallard (CAU_wild_1.0), and Shaoxing duck (CAU_laying_1.0) genomes, respectively, with average lengths of 7,046, 7,027, and 6,945 bp. ERVs are mainly distributed on the 1, 2, and sex chromosomes. Phylogenetic analysis demonstrated the presence of Betaretrovirus in 3 duck genomes, whereas Alpharetrovirus was exclusively identified in the Shaoxing duck genome. Through screening, 596, 315, and 343 genes adjacent to ERV were identified in 3 duck genomes, respectively, and their functions of ERV neighboring genes were predicted. Functional enrichment analysis of ERV-adjacent genes revealed enrichment for Focal adhesion, Calcium signaling pathway, and Adherens junction in 3 duck genomes. The overlapped genes were highly expressed in 8 tissues (brain, fat, heart, kidney, liver, lung, skin, and spleen) of 8-wk-old Mallard, revealing their important expression in different tissues. Our study provides a new perspective for understanding the quantity and function of DERVs, and may also provide important clues for regulating nearby genes and affecting the traits of organisms.


Subject(s)
Ducks , Endogenous Retroviruses , Genome , Phylogeny , Animals , Ducks/virology , Ducks/genetics , Endogenous Retroviruses/genetics
3.
Front Microbiol ; 15: 1334045, 2024.
Article in English | MEDLINE | ID: mdl-38426060

ABSTRACT

The purpose of this research was to investigate the impact of dietary supplementation of Caragana korshinskii tannin (CKT) on rumen fermentation, methane emission, methanogen community and metabolome in rumen of sheep. A total of 15 crossbred sheep of the Dumont breed with similar body conditions, were divided into three groups (n = 5), which were fed with CKT addition at 0, 2 and 4%/kg DM. The study spanned a total of 74 days, with a 14-day period dedicated to adaptation and a subsequent 60-day period for conducting treatments. The results indicated that the levels of ammonia nitrogen (NH3-N) and acetate were reduced (p < 0.05) in rumen sheep fed with 2 and 4% CKT; The crude protein (CP) digestibility of sheep in 2 and 4% CKT groups was decreased(p < 0.05); while the neutral detergent fiber (NDF) digestibility was increased (p < 0.05) in 4% CKT group. Furthermore, the supplementation of CKT resulted in a decrease (p < 0.05) in daily CH4 emissions from sheep by reducing the richness and diversity of ruminal methanogens community, meanwhile decreasing (p < 0.05) concentrations of tyramine that contribute to methane synthesis and increasing (p < 0.05) concentrations of N-methy-L-glutamic acid that do not contribute to CH4 synthesis. However, CH4 production of DMI, OMI, NDFI and metabolic weight did not differ significantly across the various treatments. To sum up, the addition of 4% CKT appeared to be a viable approach for reducing CH4 emissions from sheep without no negative effects. These findings suggest that CKT hold promise in mitigating methane emissions of ruminant. Further investigation is required to evaluate it effectiveness in practical feeding strategies for livestock.

4.
Poult Sci ; 103(4): 103515, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38350390

ABSTRACT

The skeleton is a vital organ providing structural support in poultry. Weakness in bone structure can lead to deformities, osteoporosis, cage fatigue, and fractures, resulting in economic losses. Research has substantiated that genetic factors play a significant role in influencing bone quality. The discovery of genetic markers associated with bone quality holds paramount importance for enhancing genetic traits related to the skeletal system in poultry. This study analyzed nine phenotypic indicators of tibia quality in 120-day-old ducks. The phenotypic correlation revealed a high correlation among diameter, Perimeter, and weight (0.69-0.78), and a strong correlation was observed between toughness and breaking strength (0.62). Then, we conducted a genome-wide association analysis of the phenotypic indicators to elucidate the genetic basis of tibial quality in Nonghua ducks. Among the 11 candidate genes that were annotated, TAPT1, BST1, and STIM2 were related to the diameter indicator, ZNF652, IGF2BP1, CASK, and GREB1L were associated with the weight and toughness indicators. RFX8, GLP1R, and DNAAF5 were identified for ash, calcium, and phosphorus content, respectively. Finally, KEGG and GO analysis for annotated genes were performed. STIM2 and BST1 were enriched into the Calcium signalling pathway and Niacin and nicotinamide metabolic pathway, which may be key candidate genes affecting bone quality phenotypes. Gene expression analysis of the candidate genes, such as STIM2, BST1, TAPT1, and CASK showed higher expression levels in bones compared to other tissues. The obtained results can contribute to new insights into tibial quality and provide new genetic biomarkers that can be employed in duck breeding.


Subject(s)
Calcium , Ducks , Animals , Ducks/genetics , Ducks/metabolism , Calcium/metabolism , Genome-Wide Association Study/veterinary , Tibia/metabolism , Chickens/genetics
5.
Ann Med ; 55(1): 2235560, 2023 12.
Article in English | MEDLINE | ID: mdl-37467159

ABSTRACT

PURPOSES: The purpose of this study was to evaluate the effects of the COVID-19 lockdown on physical fitness among college women living in China and to explore how fitness changed with different physical conditions. METHODS: We performed repeated measures of BMI, 800 m running and sit-up performance assessment on college women from one university in China pre and post the COVID-19 lockdown. A total of 3658 (age 19.15 ± 1.08 yr.) college women who completed the same assessment pre and post the COVID-19 lockdown were included in the analysis. We analyzed the data using one way ANOVA and paired-samples t-test. RESULTS: Due to the COVID-19 lockdown, the result shows a significant increase in BMI by 2.91% (95% CI =0.33, 0.40) and a significant decline in 800 m running and sit-up by 7.97% (95% CI =0.69, 0.77) and 4.91% (95% CI = -0.27, -0.19), respectively. College women in the highest quartile level of physical condition (Quartile 4) had more decreases than college women in the lowest quartile level (Quartile 1). Their BMI level was increased by 3.69% and 0.98% in college women in Quartile 4 and Quartile 1, respectively. Their performance of 800 m running was decreased by 9.32% and 7.37% in college women in Quartile 4 and Quartile 1, respectively. Their performance of sit-up was decreased by 13.88% in college women in Quartile 4 while it increased by 10.91% in college women in Quartile 1, respectively. CONCLUSIONS: The COVID-19 lockdown might increase the BMI level and decrease 800 m running and sit-up performance among college women living in China. The decrease for college women in higher quartile level of physical condition (Quartile 4) were more seriously while college women in lower quartile level of physical condition (Quartile 1) were modest.


This study performed repeated tests on a large sample of 3658 college women before and after the COVID-19 lockdown to estimate the impact of COVID-19 on physical fitness.The COVID-19 lockdown decreased physical fitness (BMI, 800 m running and sit-up performance) among college women living in China.College women in higher level of physical condition at baseline were more seriously affected by the COVID-19 lockdown than college women in lower level of physical condition.


Subject(s)
COVID-19 , Humans , Female , Adolescent , Young Adult , Adult , Universities , Body Mass Index , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control , Physical Fitness , China/epidemiology
6.
Anim Genet ; 54(4): 500-509, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37194451

ABSTRACT

Sexually dimorphic plumage coloration is widespread in birds. The male possesses more brightly colored feathers than the female. Dark green head feathers comprise one of the most typical appearance characteristics of the male Ma duck compared with the female. However, there are noticeable individual differences observed in these characteristics. Herein, genome-wide association studies (GWAS) were employed to investigate the genetic basis of individual differences in male duck green head-related traits. Our results showed that 165 significant SNPs were associated with green head traits. Meanwhile, 71 candidate genes were detected near the significant SNPs, including four genes (CACNA1I, WDR59, GNAO1 and CACNA2D4) related to the individual differences in the green head traits of male ducks. Additionally, the eGWAS identified three SNPs located within two candidate genes (LOC101800026 and SYNPO2) associated with TYRP1 gene expression, and might be important regulators affecting the expression level of TYRP1 in the head skin of male ducks. Our data also suggested that transcription factor MXI1 might regulate the expression of TYRP1, thereby causing differences in the green head traits among male ducks. This study provided primary data for further analysis of the genetic regulation of duck feather color.


Subject(s)
Ducks , Genome-Wide Association Study , Female , Male , Animals , Ducks/genetics , Feathers/physiology , Phenotype , Polymorphism, Single Nucleotide
7.
BMC Genomics ; 24(1): 285, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37237371

ABSTRACT

BACKGROUND: The genetic locus responsible for duck body size has been fully explained before, but the growth trait-related genetic basis is still waiting to be explored. For example, the genetic site related to growth rate, an important economic trait affecting marketing weight and feeding cost, is still unclear. Here, we performed genome wide association study (GWAS) to identify growth rate-associated genes and mutations. RESULT: In the current study, the body weight data of 358 ducks were recorded every 10 days from hatching to 120 days of age. According to the growth curve, we evaluated the relative and absolute growth rates (RGR and AGR) of 5 stages during the early rapid growth period. GWAS results for RGRs identified 31 significant SNPs on autosomes, and these SNPs were annotated by 24 protein-coding genes. Fourteen autosomal SNPs were significantly associated with AGRs. In addition, 4 shared significant SNPs were identified as having an association with both AGR and RGR, which were Chr2: 11483045 C>T, Chr2: 13750217 G>A, Chr2: 42508231 G>A and Chr2: 43644612 C>T. Among them, Chr2: 11483045 C>T, Chr2: 42508231 G>A, and Chr2: 43644612 C>T were annotated by ASAP1, LYN and CABYR, respectively. ASAP1 and LYN have already been proven to play roles in the growth and development of other species. In addition, we genotyped every duck using the most significant SNP (Chr2: 42508231 G>A) and compared the growth rate difference among each genotype population. The results showed that the growth rates of individuals carrying the Chr2: 42508231 A allele were significantly lower than those without this allele. Moreover, the results of the Mendelian randomization (MR) analysis supported the idea that the growth rate and birth weight had a causal effect on the adult body weight, with the growth rate having a greater effect size. CONCLUSION: In this study, 41 SNPs significantly related to growth rate were identified. In addition, we considered that the ASAP1 and LYN genes are essential candidate genes affecting the duck growth rate. The growth rate also showed the potential to be used as a reliable predictor of adult weight, providing a theoretical reference for preselection.


Subject(s)
Ducks , Genome-Wide Association Study , Humans , Adult , Animals , Ducks/genetics , Quantitative Trait Loci , Genotype , Body Weight/genetics , Polymorphism, Single Nucleotide
8.
Poult Sci ; 102(1): 102243, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36334470

ABSTRACT

The feather is an important epidermal appendage, plays an important role in the life activities of avian specie, and has important economic value. Revealing the molecular regulation mechanism of feather growth has a significant meaning in studying adaptive evolution, physiology, and mating of avian species and also provides a theoretical reference for poultry breeding. In this study, the genome-wide association analysis (GWAS) of 358 ducks was based on primary feather length phenotypic data (28-60 d), length growth rates (LGRs), and maturity scores (60 d) to explore the genetic basis affecting feather growth and maturation. The results showed that, among the primary feather 1 to 5 in ducks, the mean LGR of primary feather 2 was the fastest, with the longest length. The primary feathers in males grew and matured slightly faster than in females. The mean maturity scores of primary feather 10∼7 were higher than primary feather 1 to 3 in ducks. GWAS further showed 116 SNPs associated with feather length traits. In addition, 2 candidate regions (Chr1: 127,407,230-127,524,879 bp and Chr21: 182,061,707-183,616,298 bp) were associated with LGR, which contain total 13 candidate genes (The extremely significant SNPs were mainly located in 2 genes: Chr1: REPS2 and Chr21: PTPRT). Four candidate regions (Chr1: 29,113,036-28,675,018 bp, Chr2: 18,253,612-149,111,290 bp, Chr15: 6,489,774 to 12,138,221 bp and Chr21: 6,578,021-8,472,904 bp) were associated with feather maturity, which contain total 24 candidate genes (The extremely significant SNPs were mainly located in 4 genes: Chr1: IMMP2L, DOCK4 and DDX10, Chr2: LDLRAD4). In conclusion, sex factors influence feather growth and maturity, and the genetic basis of the growth /maturity trait between different feathers is similar. REPS2, PTPRT genes, and IMMP2L, DOCK4, DDX10, and LDLRAD4 are important candidate genes that influence feather growth and maturity, respectively.


Subject(s)
Ducks , Feathers , Female , Male , Animals , Ducks/genetics , Genotype , Genome-Wide Association Study/veterinary , Chickens/genetics
9.
Poult Sci ; 102(2): 102341, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36481710

ABSTRACT

Egg weight is an important indicator of egg phenotypic traits, which directly affects the economic benefits of the poultry industry. In the present research, laying ducks were classified into high egg weight (HEW) and light egg weight (LEW) groups. To reveal the underlying mechanism that may be responsible for the egg weight difference, the integrated analysis of transcriptomes and serum metabolomics was performed between the two groups. The results showed extremely significant differences (P < 0.01) in the total egg weight at 300 d, and average egg weight between the HEW and LEW groups. 733, 591, 82, and 74 differentially expressed genes (DEGs) were identified in the liver, magnum, F1, and F5 (hierarchical follicles) follicle membrane, respectively. The candidate genes were screened further from the perspective of forming an egg. In terms of egg yolk formation, the functional analysis revealed fatty acid metabolism-related pathways account for 36% of the liver's top pathways, including fatty acid biosynthesis, folate biosynthesis, fatty acid metabolism, and glycerol lipid metabolism pathways. FASN gene was identified as the key candidate gene by comprehensive analysis of gene expression and protein-protein interaction (PPI) network. In the follicle membrane, the DEGs were mainly enriched in protein processing in the endoplasmic reticulum, and MAPK signaling pathway, and HSPA2, HSPA8, BAG3 genes were identified as crucial candidate genes. In terms of egg white formation, the functional analysis revealed protein metabolism-related pathways account for 40% of the magnum's top pathways, which includes protein processing in the endoplasmic reticulum pathway. HSP90AA1 and HSPA8 genes were identified as key candidate genes. In addition, the integrated transcriptomic and metabolomic analysis showed that arginine and proline metabolism pathways could contribute to differences in egg weight. Thus, we speculated that the potential candidate genes, regulatory pathways, and metabolic biomarkers mentioned above might be responsible for the egg weight difference. These findings might provide a theoretical basis for improving the egg weight of ducks.


Subject(s)
Ducks , Transcriptome , Animals , Ducks/genetics , Ducks/metabolism , Chickens/genetics , Gene Expression Profiling/veterinary , Metabolomics , Fatty Acids/metabolism
10.
Animals (Basel) ; 14(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38200816

ABSTRACT

In modern advanced genetics and breeding programs, the study of genes related to pigmentation in ducks is gaining much attention and popularity. Genes and DNA mutation cause variations in the plumage color traits of ducks. Therefore, discovering related genes responsible for different color traits and pigment patterns on each side of the single feathers in Chinese ducks is important for genetic studies. In this study, we collected feather images from 340 ducks and transported them into Image Pro Plus (IPP) 6.0 software to quantify the melanin content in the feathers. Thereafter, a genome-wide association study was conducted to reveal the genes responsible for variations in the feather color trait. The results from this study revealed that the pigmented region was larger in the male ducks as compared to the female ducks. In addition, the pigmented region was larger on the right side of the feather vane than on the left side in both dorsal and ventral feathers, and a positive correlation was observed among the feather color traits. Further, among the annotated genes, WNT3A, DOCK1, RAB1A, and ALDH1A3 were identified to play important roles in the variation in pigmented regions of the various feathers. This study also revealed that five candidate genes, including DPP8, HACD3, INTS14, SLC24A1, and DENND4A, were associated with the color pigment on the dorsal feathers of the ducks. Genes such as PRKG1, SETD6, RALYL, and ZNF704 reportedly play important roles in ventral feather color traits. This study revealed that genes such as WNT3A, DOCK1, RAB1A, and ALDH1A3 were associated with different pigmentation patterns, thereby providing new insights into the genetic mechanisms of single-feather pigmentation patterns in ducks.

11.
Front Aging Neurosci ; 14: 1034041, 2022.
Article in English | MEDLINE | ID: mdl-36337695

ABSTRACT

Background and objective: Postoperative neurocognitive dysfunction (PND) occurs in up to 54% of older patients, giving rise to the heavy psychological and economic burdens to patients and society. To date, the development of PND biomarkers remains a challenge. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) is an RNA-binding protein whose prion-like structure is prone to mutation and hence leads to neurodegenerative diseases, but its expression changes in PND remains unclear. Here, we detect the preoperative hnRNPA2/B1 level in patients with PND, and to explore its value in the prediction and diagnosis of PND. Methods: The study included 161 elderly patients undergoing lumbar decompression and fusion in Nankai University Affinity the Third Central Hospital from September 2021 to July 2022. Neuropsychological and psychometric evaluations were performed before surgery, 1 week and 3 months after surgery to diagnose the occurrence of PND, then the peripheral blood was collected from patients before induction of anesthesia. The concentration in plasma of hnRNPA2/B1 and amyloid-ß 42 were determined by enzyme-linked immunosorbent assay. The median fluorescence intensity and mRNA levels of hnRNPA2/B1 in peripheral blood mononuclear cells was detected by indirect intracellular staining flow cytometry and quantitative real-time PCR, respectively. Results: The preoperative hnRNPA2/B1 level in patients with PND was higher both in short-time and long-time follow-up. We found significantly higher concentrations of hnRNPA2/B1 in PND at 7 days after surgery (median, 72.26 pg/mL vs. 54.95 pg/mL, p = 0.022) compared with patients without PND, and so as 3 months after surgery (median, 102.93 pg/mL vs. 56.38 pg/mL, p = 0.012). The area under the curve (AUC) was predicted to be 0.686 at 7 days after surgery and 0.735 at 3 months. In addition, when combining several clinical information, the diagnostic efficiency of hnRNPA2/B1 for PND could further increase (AUC, 0.707 at 7 days, 0.808 at 3 months). Conclusion: Based on the findings reported here, hnRNPA2/B1 may serve as a new and powerful predictive biomarker to identify elderly patients with PND.

12.
Poult Sci ; 101(11): 102149, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36209604

ABSTRACT

Previous research in our lab showed that 10% glucose, 10% fructose, and 10% sucrose can induce lipid deposition in goose fatty liver formation process more efficiently. However, whether the overfeeding diet supplement with sugar can affect the meat quality is unclear. The aim of this research was to estimate the meat quality of geese overfed with overfeeding diet adding with different types of sugar. The results indicated there were no significant differences in the diameter of muscle fiber, the muscle fiber density, pH0, pH24, the meat color, the cooking loss, the drip loss, the shear force and the dry matter in breast muscle and thigh muscle between corn flour groups and three sugars groups (P > 0.05). The crude fat content of breast muscle in fructose group was significantly higher than that in sucrose group (P < 0.05); the inosinic acid content of leg muscle in fructose group was significantly higher than that in the sucrose group (P < 0.05); the ratios of essential amino acids to total amino acids (EAA/TAA) in the breast muscle of maize flour group, fructose group, sucrose group and glucose group were 42%, 35%, 32% or 34%;57%, 64%, 64%, and 62%, respectively; the ratios of essential amino acids to total amino acids in leg muscle of maize flour group, fructose group, sucrose group and glucose group were 31%, 33%, 35%, and 34%, respectively. The contents of C16:1 and C18:1 n-9c in breast muscle in fructose group were significantly higher than that in sucrose group (P < 0.05). Compared with maize flour group, the contents of C18:0 and C20:0 were lower in leg muscle of sugar group (P < 0.05). Compared with the maize flour group, the activities of hydrogen peroxide (H2O2) and glutathione peroxidase (GSH-PX) in breast muscle were higher than those of sucrose group (P < 0.05), the total antioxidant capacity (T-AOC) levels in breast muscle was higher than that of fructose group and sucrose group (P < 0.05). Cluster analysis and principal component analysis (PCA) showed that there was no difference in meat quality between maize flour and sugar group. In conclusion, the overfeeding with maize flour supplement with 10% sugar had no evident influence on the meat quality.


Subject(s)
Hydrogen Peroxide , Sugars , Animals , Chickens , Meat/analysis , Geese/physiology , Fructose , Glucose , Amino Acids/analysis , Amino Acids, Essential , Sucrose
13.
Food Res Int ; 161: 111859, 2022 11.
Article in English | MEDLINE | ID: mdl-36192983

ABSTRACT

Poultry products are an essential animal source of protein for humans. Many factors could destroy the balance of the poultry production chain and cause an overstock of products, which need to be stored in the frozen storage warehouse for a long time. The long-term frozen storage may affect the quality of meat products. In this study, the changes of small molecular substances were revealed in duck meat during long-term storage using non-targeted metabolomics. The results showed that compared with fresh meat, even if the meat is stored under frozen storage conditions, the number of differential metabolites of frozen storage meat continues to increase with the prolongation of storage time, indicating that the meat composition has changed significantly with the storage time increased. With the increase in storage time, the nitrogen-containing small molecular compounds in duck meat increased (carnosine and anserine, aspartic acid, and tyrosine, 1H-indole-3-acetamide, 2-Hydroxyphenethylamine, 2-Naphylamine, allocystathionine, and O-phosphoethanolamine), the nucleotides decomposition process strengthened (IMP and AMP, GMP and UMP), and the content of organic acid increased (5-hydroxy indole acetic acid, 5-hydroxypentanoic acid and phenylacetate, taurine) and carbohydrate (1-O-sinapoyl-beta-d-glucose, 4-O-beta-d-glucopyranosyl-d-mannose, and alpha-d-glucose). These small molecular substances can be used as biomarkers to detect long-term stored duck meat deterioration. KEGG enrichment analysis showed that protein catabolism, nucleotide catabolism, fat decomposition and oxidation, and carbohydrate decomposition were the main metabolic processes of meat deterioration during the long-term storage of duck meat. In addition, Non-target metabolome technology is a powerful tool to reveal the meat deterioration process during long-term storage systematically. This study provided a reference for optimizing domestic poultry meat storage methods and ensuring food safety.


Subject(s)
2-Hydroxyphenethylamine , Carnosine , Animals , Humans , 2-Hydroxyphenethylamine/metabolism , Adenosine Monophosphate/metabolism , Anserine/metabolism , Aspartic Acid/metabolism , Carbohydrates , Carnosine/metabolism , Ducks/metabolism , Glucose/metabolism , Meat/analysis , Nitrogen/metabolism , Phenylacetates/metabolism , Taurine/metabolism , Tyrosine/metabolism , Uridine Monophosphate/metabolism
14.
Brain Sci ; 12(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36291348

ABSTRACT

PURPOSE: The effect of scinderin (SCIN) on cancer progression has been studied, but its role in glioma remains unknown. This study describes the value of SCIN for the diagnosis, prognosis, and treatment of glioma. METHODS: The expression of SCIN was analyzed using the GEPIA, Oncomine, cBioPortal, and CGGA databases. GO/KEGG enrichment analysis of similar genes to SCIN were performed using the R software package, and the protein-protein interaction (PPI) network was analyzed by the STRING and GeneMANIA databases. The correlations of mRNA expression between SCIN and MMP2/9 were analyzed by TCGA glioma. Simultaneously, the TISIDB and TIMER databases were used to analyze the correlation between SCIN and immune infiltration. Finally, SCIN and MMP2/9 protein expression among different grades of glioma was performed and the results were obtained via immunohistochemistry and Western blot assays. We used the Kaplan-Meier method and Cox proportional hazards model to assess the impact of SCIN and MMP2/9 on glioma patients' survival. The correlations between SCIN and MMP2/9 were analyzed by immunohistochemistry and Western blot assays. RESULTS: SCIN was upregulated in glioma patients with a poor prognosis. The GO and KEGG enrichment analysis showed the functional relationship between SCIN and the immune cell activation and regulation. In addition, the expression of SCIN was related to MMP2/9 in glioma. The correlation analysis showed that SCIN expression was associated with tumor purity and immune infiltration. SCIN and MMP2/9 are negative prognostic factors resulting in worsening glioma patients' survival. CONCLUSION: Our studies demonstrated that SCIN expression was associated with MMP2/9, immune infiltration, and a poor prognosis in glioma. SCIN may serve as a potential prognostic marker and an immune therapy target for glioma.

15.
Article in English | MEDLINE | ID: mdl-36011560

ABSTRACT

BACKGROUND: This study aimed to estimate the impact of the COVID-19 lockdown on fitness performance among Chinese college men during the pandemic period and to explore how fitness changed with a different college grade. METHODS: We conducted repeated measures of 1000 m running and pull-up testing on students from one university in China before and after the lockdown. A total of 7107 (age 19.21 ± 1.17 yr.) male students who completed the same 1000 m running and pull-up testing in 2019 and 2020 were included in the analysis. RESULTS: The paired t-test result indicates a reduction in 1000 m running and pull-up performance by 10.91% (95% CI = 0.89, 0.95) and 23.89% (95% CI = -0.36, -0.31), respectively. Interestingly, college men in the 2017 grade (the third-year college men) had more decreases than in the 2019 grade (the first-year college men). The 1000 m running performance was decreased by 14.43% and 6.48% in the third- and the first-year college men, respectively. The pull-up performance was decreased by 39.11 % in the third-year college men while increased by 10.98% in the first-year college men. CONCLUSIONS: The COVID-19 lockdown reduced 1000 m running and pull-up performances among Chinese college men. The reduction varies by grade and it seems to be particularly seriously decreased for the third-year college men while being modest for the first-year college men. Public policy was urgently needed to improve Chinese college men's fitness performance after the lockdown.


Subject(s)
COVID-19 , Running , Adolescent , Adult , COVID-19/epidemiology , China/epidemiology , Communicable Disease Control , Humans , Male , Universities , Young Adult
16.
Taiwan J Obstet Gynecol ; 61(1): 96-101, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35181055

ABSTRACT

OBJECTIVE: To investigate whether genomic instability (GI)-derived long non-coding RNAs (lncRNAs) have a prognostic impact on the patients with endometrial cancer. MATERIAL AND METHODS: Patients with Uterine Corpus Endometrial Carcinoma (UCEC) were selected from The Cancer Genome Atlas (TCGA) database. Systematic bioinformatics analyses were performed, including Pearson correlations, GO and KEGG enrichment analysis, bivariate and multiple logistic regression analysis, and Kaplan-Meier (KM) method. RESULTS: A total of 552 UCEC samples were included in the study. The differentially expressed lncRNAs (DELs) were identified, including 79 down-regulated lncRNAs and 31 up-regulated lncRNAs. Bivariate logistic regression analysis showed that 19 GI-derived lncRNAs were prognostic factors. By further multivariate logistic regression analysis, AC005256.1 (estimated coefficient = -0.474), AC026336.3 (estimated coefficient = -0.030), AL161618.1 (estimated coefficient = -1.661), and BX322234.1 (estimated coefficient = 1.511) were used to construct a prognostic risk model. In the train set and test set, the risk model was shown to have both a high prognostic and a diagnostic value. CONCLUSION: We developed a novel GI-derived 4-lncRNA signature for the diagnosis and prognosis of patients with endometrial cancer. These findings offered a novel perspective in the clinical management of endometrial cancer.


Subject(s)
Carcinoma, Endometrioid/genetics , Endometrial Neoplasms/genetics , Genomic Instability , RNA, Long Noncoding/genetics , Adult , Aged , Biomarkers, Tumor/genetics , Carcinoma, Endometrioid/mortality , Carcinoma, Endometrioid/pathology , Databases, Genetic , Disease-Free Survival , Endometrial Neoplasms/mortality , Endometrial Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Genome , Humans , Kaplan-Meier Estimate , Prognosis , Risk Factors
17.
Mol Biol Rep ; 49(4): 3187-3196, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35124793

ABSTRACT

BACKGROUND: Bones and muscles originated together from the mesoderm during embryogenesis, and they can influence each other through mechanical stimulations and chemical signals. The sclerostin (SOST) is secreted from mature osteocytes. Here, we used a bird model to illustrate the potential roles of SOST on duck myoblasts to verify the hypothesis that SOST might play functions in coordinating the development of bones and muscles. METHODS AND RESULTS: Firstly, a recombinant adenovirus vector carrying duck SOST was constructed. Then, the adenovirus-mediated duck SOST was transfected into duck myoblasts. The results revealed by CCK-8 showed that the cell proliferation of myoblasts was inhibited after 12 h, 36 h, and 48 h treatment by transfection of SOST. The labeling rates of EdU positive cells in the Ad-duSOST group were significantly lower than the Ad-NC group (P < 0.05). However, the flow cytometry showed that the cells' G0/G1 phase number was not significantly different. Furthermore, the immunofluorescence results showed that the formation of myotubes was inhibited. Subsequent transcriptome revealed that, under the ectopic expression of SOST, the genes related to Cytokine-cytokine receptor interaction, muscle development (regulation of action cytoskeleton, Wnt signaling pathway), and intercellular regulation were changed. Six of the top 20 DEGs were related to morphogenesis. CONCLUSIONS: Our studies demonstrated that the SOST played critical roles in myoblasts differentiation by mediating the crosstalk among several pathways and transcription factors related to cell differentiation. Our data provided cellular evidence supporting the combined functions of SOST in coordinating bone and muscle co-development.


Subject(s)
Adaptor Proteins, Signal Transducing , Ducks , Adaptor Proteins, Signal Transducing/genetics , Adenoviridae/genetics , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Ducks/genetics , Muscle Development/genetics , Wnt Signaling Pathway
18.
Animals (Basel) ; 12(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35203121

ABSTRACT

The exchange of information between animals is crucial for maintaining social relations, individual survival, and reproduction, etc. The uropygial gland is a particular secretion gland found in birds. We speculated that uropygial gland secretions might act as a chemical signal responsible for sexual communication. We employed non-targeted metabolomic technology through liquid chromatography and mass spectrometry (LC-MS) to identifying duck uropygial gland secretions. We observed 11,311 and 14,321 chemical substances in the uropygial gland secretion for positive and negative ion modes, respectively. Based on their relative contents, principal component analysis (PCA) showed that gender significantly affects the metabolite composition of the duck uropygial gland. A total of 3831 and 4510 differential metabolites were further identified between the two sexes at the positive and negative ion modes, respectively. Of them, 139 differential metabolites were finally annotated. Among the 80 differential metabolites that reached an extremely significant difference (p < 0.01), we identified 24 volatile substances. Moreover, we further demonstrated that five kinds of volatile substances are highly repeatable in all testing ducks, including picolinic acid, 3-Hydroxypicolinic acid, indoleacetaldehyde, 3-hydroxymethylglutaric acid, and 3-methyl-2-oxovaleric acid. All these substances are significantly higher in males than in females, and their functions are involved in the reproduction processes of birds. Our data implied that these volatile substances act as sex pheromones and may be crucial olfactory clues for mate selection between birds. Our findings laid the foundation for future research on whether uropygial gland secretion can affect ducks' reproduction and production.

19.
Front Genet ; 12: 627974, 2021.
Article in English | MEDLINE | ID: mdl-34956302

ABSTRACT

Sexual dimorphism of feather color is typical in mallards, in which drakes exhibit green head feathers, while females show dull head feather color. We showed that more melanosomes deposited in the males' head's feather barbules than females and further form a two-dimensional hexagonal lattice, which conferred the green feather coloration of drakes. Additionally, transcriptome analysis revealed that some essential melanin biosynthesis genes were highly expressed in feather follicles during the development of green feathers, contributing to melanin deposition. We further identified 18 candidate differentially expressed genes, which may affect the sharp color differences between the males' head feathers, back feathers, and the females' head feathers. TYR and TYRP1 genes are associated with melanin biosynthesis directly. Their expressions in the males' head feather follicles were significantly higher than those in the back feather follicles and females' head feather follicles. Most clearly, the expression of TYRP1 was 256 and 32 times higher in the head follicles of males than in those of the female head and the male back, respectively. Hence, TYR and TYRP1 are probably the most critical candidate genes in DEGs. They may affect the sexual dimorphism of head feather color by cis-regulation of some transcription factors and the Z-chromosome dosage effect.

20.
Toxicol Res (Camb) ; 10(5): 1074-1076, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34729178

ABSTRACT

[This corrects the article DOI: 10.1093/toxres/tfab074.].

SELECTION OF CITATIONS
SEARCH DETAIL
...